Pedestrian foot traffic disturbs ovipositing Karner blue butterflies: Potential implications for trail construction

Vanessa S. Quinn, Victoria Bennett, and Patrick A. Zollner

Motivation for investigating the effects of ecotourism and recreation

Potential Implications

- Positive
 - Increased revenue
 - Increased public awareness/appreciation
 - Increased support for wildlife preservation

Research Question

• Will trail use in proximity to Karner blue butterflies influence behavior and host plant selection?

- Karner Blue Butterfly (Lycaeides melissa samuelis)
 - Small butterfly with a wingspan of about 2.5 cm
 - Sexually dimorphic
- Two generations of this butterfly occur each year.
 - Late April
 - Early Summer (July)
- Feeding behavior
 - Adult butterflies nectar on flowering plants
 - Caterpillars feed only on wild lupine.

Conservation Status

 Endangered species found in only a few areas of midwestern North America.

Simulation of Disturbance Activities (SODA)

- Flexible for modeling multiple species
- Stochastic individual-based model
- Uses realistic case study maps
- Puts emphasis on species responses
 - Behavioral not population level responses
 - Simultaneous responses to multiple human disturbance types
- Diverse scenario capabilities

Three inputs for SODA

- Wildlife Inputs
 - Activity and behavioral patterns
 - Predation risk
 - Movement rules*
 - Responses to human activity**
 - Flight initiation distance recreationalist causes wildlife to flee
 - Fleeing distance how far the wildlife goes
 - Time spent latent how long before the wildlife returns
 - Detection distance wildlife detect a recreationalist

Movement rules

- Observe male and female butterflies
 - Estimate first distance to butterfly (c)
 - Estimate first bearing of butterfly (Bearing 1)
- Butterfly moves
 - Distance 2 (a)
 - Bearing 2
- Calculate the flight distance (b) using simple trigonometry
 - Angle B = Bearing 1- Bearing 2
 - $b^2 = a^2 + c^2 2ac(cos B)$

Responses to Human Activity

- Observe male and female butterflies
 - D1
 - Bearing 1
- Recreationalist moves
 - Distance 2 to pedestrian
 - Bearing 2 to pedestrian
- Butterfly moves
 - Distance 3 to butterfly
 - Bearing 3 to butterfly

One example of wildlife input

- Female flight distance was significantly greater when disturbed by a pedestrian (207 cm ± 52.8) than when there was no pedestrian present (125 cm ± 32.1; t = 2.587; P = 0.006)
- There is no difference in male flight distance in the presence (257 cm + 152.6) or absence of a predator (348 cm + 97.6; t = 1.032; P = 0.315)

Three inputs for SODA

- Scenario inputs
 - Number of days a simulation is run
 - Season length during oviposition
 - GIS map of the study site with specific features
 - Trails
 - Every 20 steps
 - GPS location
 - Distance to nearest lupine plant

Three inputs for SODA

- Anthropogenic Inputs
 - Types of recreation observed
 - Hikers alone and in groups
 - Dog walkers on and off leash
 - Temporal patterns of activity
 - Time of day
 - Day of the week
 - Length of use
 - Frequency of use

SODA Output

- Frequency of disturbance over 16 days
 - How does visitor number affect butterfly disturbance?
 - Visitor numbers significantly affected disturbance rates.
 - During periods of maximum visitation approximately 50% more disturbance-related behaviour was exhibited compared to intermediate or minimum scenarios.

SODA Output

- Frequency of disturbance over 16 days
 - How does habitat (wild lupine patches) affect butterfly disturbance?
 - Sensitive and tolerant individuals
 - Females more sensitive than males
 - Habitat matters
 - Virtual butterflies in habitat patches extending 10 to 15 m from the trail experienced 40% more disturbance than those in habitat patches exceeding 20 m.

Future Research

Isolated Rare Specialists

Karner Blue L. melissa samuelis

American Copper *Lycaena phlaeas*

Olympic Marble Euchloe olympia

Widespread Common Generalist

Little Wood Satyr *Megisto cymela*

Red Admiral

Vanessa atalanta

Spring Azure Celastrina ladon

Acknowledgements

- Indiana Academy of Science
- Indiana-Illinois Sea Seed Grant
- Indiana Dunes
- Dr. Randy Knutson